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The effect of a general orbit bump AB(z) on the closed 

orbit and the effect of a general focusing bump AB'(z) on the 

B-function were given by Courant and Snyder (Ann. of Phys. 3, 

l-48, 1958, hereafter referred to as C & S.) Here, we put 

their formulas into easy-to-apply forms and apply them to the 

main ring. For completeness, we will outline the derivations 

of the formulas given in C & S. 

I. ORBIT BUMP 

With an orbit bump AB(z) the orbit equation is 

d2x - + K(z)x = -8. 
dz2 

After the Floquet transformation 

we get 

x= m~U dz = vB d8 

- -I- v2u = d2u 
de2 

F(e) l 

(1) 

(2) 

(3) 

e Operated by Universities Research Association Inc. Under Contract with the United States Atomic Energy Commission 
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The periodic solution (closed orbit) is 

p+2lT 
+ e -iv(0+7T) y 

1 
F(8')e (4) 

[Except for difference in notation this is identical to Eq. 

(4.7) of c & s'l. It is useful to calculate the "invariant" 

W [Eq. (3.22) of C & S], except now, W = W(9) is a function 

of 0. 

e+2lT 0+2Tr 
V = 

4v2sin2?rv 
F(8')e F(B')e 

z+ z+L 
1 = 

4sin2.rrv 
(5) 

where 

',L = orbit length all around 

phase of betatron oscillation. 

If the bumps are all localized 8-functions we have 
__L 

-i+ 
6,<e ' 

---I 

1 

i 

I 

(6) 
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where 
(ABUn 

*n q BP = kick angle of the nth bump, 

In between two bumps W is constant an,d the upper-bound of the 

orbit displacement in that region is given by f = m. 

Case 1 

If we have only one bump (n = 0) 

w= 
BO6O2 

4sin27ru' 

For the main ring if one bending magnet (60 = 0.0081) at 

80 
2 90m is missing we have, since sin nv h l/a 

WZ* (9Q m)(0.0081)2 = 2950 mm-mrad. .~ 

The maximum 8 is 8,x 2 100 m. This value of W gives for the 

maximum upper-bound of the closed-orbit displacement 
A 
X max = G = 540 mm 

which is, of course, much too large. 

Case 2 

If we have two bumps W(8) has only two values Wa and Wb 

in region (a) (from bump 1 

to bump 2) and region (b) 

(from bump 2 to bump l), 

respectively. They are 
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,-wa = 1 
24T5 e 

Q2 

4sin27-rv 
+ 61qe X 

\ (8) 
v&Z 
) 1 12 = 

4sin27rv t S,B, + 25S2$-5 cos A$b + 62P 1 2 ! 2p 

i 

iilt,,, Wb = l + 2”1”24& cos Wa + 6;B, 
* 4sin27rv 

This corresponds to the formulas given in TM-294-Eq.(2). For 

example, if A$a = IT and 61$ = 62$" we 

the case of a local orbit bump formed by 

advance apart. 

II. FOCUSING BUMP 

have Wb = 0. This is 

two magnets r-phase 

With a focusing bump AB'(z) the e-deviation equation 

after the Floquet transformation is 

The periodic solution is 

0+2lT 
1 

8wsin2Tv G(0')e-21ve'd6' 

8 

j@+2T 
+ e-2iv(f3+7r)f G(B')e2iwe'd01 . (10) 

I 
0 I 
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(Except for difference in notation this is identical to Eq. 

(4.50) of c & S). We can define a similar "invariant" U = U(0) 

by 

u(e) = 

e+2n 
1 = 

16v2sin22Tv 
G(el)e2ive'de 

G(0')e -2iv0'd6r 

z+L 
1 = 

4sin22.rrv 
.W) 

z 

If the bumps are localized B-functions we have 

& E 
WU, 

n BP = focusing "kink" of the nth bump. 

In between two bumps U is a constant and the upper-bound of AB 

in that region is G = @a. 

Case 1 

If we have only one bump (n = 0) 

B2E2 
UC O0 , 

4sin227rv 
(13) 
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For the main ring if one focusing quadrupole (so = 0.040 m-l) 

at, say, Box 2 99m and PO, 2 27 m is missing, we have, since 

sin 2~rv 2 1 

eUx g + (99m)2(0,040 m-1)2 = 3.92 
r 
( 
Eu G 
i..- Y + (27m)2(0.040 mF1)2 = 0.29. 

The upper-bounds of the increased B-functions, namely, B -t A$ 

are, then 

Since the main ring aperture is rather large these increases 

in f3 may well be tolerable. 

Case 2 

With two bumps U(0) has two values Ua and Ub in regions 

(a) and. (b) , respectively. 

In this case we have 

(b) 
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ua = 1 
2B2e 

2i+2 
+ clBle 

2i+l 

4sin22Tv 
X 

EZP2e 
-2i$2 

+ EIBle 

-2i+l 

/ ri 
1 i = 

I 4sin22av 
~~~~~ I- 25~~8~8~ cos A$, + #\ k22 

! E / 
I 

i 
Ub = 1 22 

Vl 
22 

4sin22rv 
+ 2el~2B182 cos A+a + e2B2 115) 

Suppose we ask the question whether it is possible to at least 

partially compensate for a missing quadrupole by turning off a 

second quadrupole. 

U is zero only when izlBl = s2b2 and cos A$ = -1. For a 

quadrupole 1~1 has the same value in the x and the y planes. 

To compensate equally for both planes we should have a, = Bl, 

namely if a focusing quadrupole is missing we should turn off 

also a focusing quadrupole. Furthermore, since 

Ua + ‘@ , = ~IT'V z 2a(20$) to get cos A$I~ and cos Ac$~ equally 

negative so that Ua and Ub are equally small we should have 

'@a =2a(k+i) andA$b=2"(19-k+$) with k = integer. 

Then cos Aea = cos Ac)~ = -cos t = -A. And we have 

2-a 22 
ua = Ub 1 4 Vl 

22 = 0.146 ~$3~ 

x-plane 

y-plane 
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if the first missing quadrupole is a focusing quadrupole. Thus 

the increase in B is reduced to 

+ &, z 2.5 (3, 

+ 6,, -z 
(16) 

1.4 By. 

Comparing these values with those in Eq. (14) we see that the 

effect of a missing quadrupole can indeed be partially compen- 

sated by turning off another quadrupole, but the amount of 

compensation is not very large. Here we considered only a 

compromised compensation in both the x and the y planes and 

in both regions (a) and (b). It is possible to improve the 

compensation if for some reason only one of the planes or one 

of the regions is considered important. 
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ERRATUM AND ADDENDUM TO TM-313 

L. C. Teng 

July 14, 1971 

AB' 1 << 1, B and terms 
AB' 7 are neglected. B 
example cases given 

invalid. 

Eq. (10) shows 

of 0 with amplitude 

Both Eqs. (1) and (9) are approximate equations. For Eq. 

(1) the approximation assumes that F << 1 and terms of the 

second and higher orders in E are neglected. P These conditions 

are satisfied for the example cases given on pp. 3 and 4. 

For Eq. (9) the approximation assumes that 9 << 1 and 

of the second and higher orders in - and 13 
These conditions are not satisfied for the 

on PP. 6 and 7. The results are, therefore, 

that % (if << 1) is a sinusoidal function 

Jis. For fi > 1, then, at some B-locations 

4, 
B -1 and the modified E = B f A6 < 0 which is certainly not 

meaningful. This is another indication that Eq. (9) and its 

solution Eq. (10) are invalid when % = fi > 1. 

For the case of one 8-function focusing bump the exact 

solution can be obtained using the transfer matrix. The transfer 

matrix around the entire closed orbit plus the bump (so) is 

e Operated by Universities Research Association Inc. Under Contract with the United States Atomic Energy Commission 
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10 i a 
cos 27Tv 3- 

o B,'\, 
sin 27~v 

0 1 -Y, -a0 i 

(go:g 27rv -I- 
i 

a 
0 $0 

- (yO+&,aO) -(cxo+EoBo) 
sin 27rv 

(AB'R) n 
where, as before, E 

0- BP l 

The modified "tune"' 5 and 

P-function at the bump 8, are, therefore, given by 

cos 21~7 = cos 27~v --+J. sin 27~v 
(1A) 

sin 26 = 8, sin 27rv. 

As so varies from zero to either positive or negative values 

stability limits cos 26 = 51 will be encountered at certain 

values of E 
0' 

Beyond these values of Ed, lcos 261 > 1 and 

the motion is unstable. At the stability limits the modified 

B-function p is w everywhere except at discrete f3-locations 
A@ - p-6 where 'ii- = 0, namely - - - is 03 everywhere except at these B- P 

A@ discrete B-locations where p = -1. Although at the stability 

limit this exact B g is hardly sinusoidal, one may expect that 

the stability limits correspond roughly to 16 = 1 when the 

"approximate" B as given by Eq. (10) also goes to zero at 

these discrete 8-locations. Eq. (13) gives, then, for the 

stability limits 

&oBo - = + sin 21~v 2 "'approximate" (2A) 
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while the exact conditions are given by Eq. (1A) as 

1 =- cos 27Tv+l sin 2nu. exact (3A) 

The exact and the "approximate" conditions are identical when 

V = (integer) + +" 

For the main ring v 2 20;. Both Eqs. (2A) and (3A) give 

for the stability limits 

or, for 6, g 100 m 

2 E +--- = -1 = 
0 

80 

w kO.02 m . 

Missing one quadrupole (so = +0.04 m -1 ) will take us beyond the 

stability limit. The most we can tolerate is missing i of a 

quadrupole. 

The "invariant" U is clearly also 
A@ valid only when - << 1. 

B 
We can put U 

form. 

an approximate invariant 

in a more conventional 

U 

2 
= + B' AB c- - + (AB)' 2 

2 B 2 1 
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(4A) 

d 8' where prime means z and (x = -2' Aa = (A@) ' -2. 

D. A, Edwards gave the exact form of this invariant as 

(5A) 

His derivation is given below: Consider two locations 1 and 2 

around the closed orbit with no focusing bump in between. The 

transfer matrices from locations 1 and 2 all the way around 

the closed orbit are respectively 

El = cos 2Tru + 7 1 sin 27~3 

= cos 2niY + (Jl+A~ 1 ) sin 21~7 

and 

M2 = cos 26 + T2 sin 21~7 

= cos 27~5 + (J~+AJ~) sin 26. 

Writing the transfer matrix from location 1 to location 2 as 

Ml2 (there is no need for a bar on top because there is no bump 

between locations 1 and 2) the relation E, = M12M1M;i leads to 

J2+AJ2 = M~~(J~+AJ~)M;$ 

Remembering that J2 = M12J1M;i we get 

AJ2 
-1 

= M12AJ1M12 
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which shows that the determinant of AJ is invariant within a 

bump-free region. We can, thus, write 

U = -IAJI = (Ao1)2 - (AB)iAy) = invariant. 

Substituting 

Ay = ~+(cx+A~)~ _ 1+02 
B+A:Es - B 

= - 

we get directly the expression (5A). 

I am grateful to Dr. S. Ohnuma for pointing out the error 

in TM-313 and to Dr. D. Edwards for the derivation of the exact 

expression of the invariant U, and to both of them for several 

illuminating discussions. 


